Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,4-Bis{3-[4-(dimethylamino)benzylideneamino]propyl}piperazine

Rui-Bo Xu,^a Xing-You Xu,^b* Da-Qi Wang,^c Xu-Jie Yang^d and Shuan Li^a

^aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, ^bHuaivin Institute of Technology, Huaian 223003, People's Republic of China, College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and ^dMaterials Chemistry Laboratory, Nanjing University of Science & Technology, Naniing 210094, People's Republic of China Correspondence e-mail: xuruibo9125@163.com

Received 16 October 2009; accepted 30 October 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.095; wR factor = 0.298; data-to-parameter ratio = 15.6.

The molecule of the title compound, C₂₈H₄₂N₆, has site symmetry $\overline{1}$ with the centroid of the piperazine ring located on an inversion center. The piperazine ring adopts a chair conformation. The benzene ring and propylpiperazine are on opposite sides of the C—N bond, showing an *E* configuration.

Related literature

For applications of Schiff base compounds, see: Basak et al. (2008); Jiang et al. (2008); Xu et al. (2008). For N,N'-disubstituted piperazine derivatives, see: Yogavel et al. (2003). For related structures, see: Paital et al. (2009); Thirumurugan et al. (1998).

Experimental

Crystal data

C28H42N6	$V = 1374.8 (4) \text{ Å}^3$
$M_r = 462.68$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 17.599 (2) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 6.4146 (12) Å	$T = 298 { m K}$
c = 12.6643 (18) Å	0.15 \times 0.09 \times 0.07 mm
$\beta = 105.921 \ (3)^{\circ}$	

Data collection

Refinement

S = 1.34

 $wR(F^2) = 0.298$

2416 reflections

 $R[F^2 > 2\sigma(F^2)] = 0.095$

Bruker SMART CCD area-detector diffractometer Absorption correction: none 6788 measured reflections

961 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.088$

2416 independent reflections

155 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This project was supported by the Key Project for Fundamental Research of the Jiangsu Provincial Educational Committee (07 K J A 150011) and the Qinglan Project of Jiangsu Province, China (2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2643).

References

- Basak, S., Sen, S., Marscher, C., Baumgartner, J., Batten, S. R., Turner, D. R. & Mitra, S. (2008). Polyhedron, 27, 1193-1200.
- Jiang, G.-Q., Cai, J., Zhang, Y.-Q. & Zhang, Q.-J. (2008). Acta Cryst. E64, 01455.
- Paital, A. R., Mandal, D., Huang, X., Li, J., Aromic, G. & Ray, D. (2009). Dalton Trans. pp. 1352-1362.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA,
- Thirumurugan, R., Shanmuga Sundara Raj, S., Shanmugam, G., Fun, H.-K., Marappan, M. & Kandaswamy, M. (1998). Acta Cryst. C54, 644-645.
- Xu, R.-B., Xu, X.-Y., Wang, M.-Y., Wang, D.-Q., Yin, T., Xu, G.-X., Yang, X.-J., Lu, L.-D., Wang, X. & Lei, Y.-J. (2008). J. Coord. Chem. 61, 3306-3313.
- Yogavel, M., Selvanayagam, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Marappan, M. & Kandaswamy, M. (2003). Acta Cryst. E59, 083-085.

supplementary materials

Acta Cryst. (2009). E65, o2997 [doi:10.1107/S1600536809045619]

1,4-Bis{3-[4-(dimethylamino)benzylideneamino]propyl}piperazine

R.-B. Xu, X.-Y. Xu, D.-Q. Wang, X.-J. Yang and S. Li

Comment

Schiff bases and their metal complexes have been of great interest for many years due to their fascinating structural features, attactive properties and potential applications in many fields (Basak *et al.*, 2008; Jiang *et al.*, 2008; Xu *et al.*, 2008). While N,*N*- disubstituted piperazines derivatives are antifilarial, antiamoebic and spermicidal agents (Yogavel *et al.*, 2003), therefore, studies on Schiff bases and their complexes derived from N,*N*- disubstituted piperazines are of importance. As part of our work, the title compound,(I), a new tetradentate Schiff base ligand, are synthesized in our group and its crystal structure is reported here.

The molecular structure of (I) with atom-numbering scheme is shown in Fig.1. The bond length of C1—N2 (1.278 (7) Å) is equal to that of C1A—N2A, which is much shorter than the C—N single bond length (1.47 - 1.50 Å) and comparable with the reported values (Yogavel *et al.*, 2003; Thirumurugan *et al.*, 1998), indicating that the C—N bonds are double bonds. Two phenyl rings (C2—C7 and C2A—C7A) in (I) are perfectly parellel to each other. As for the piperazine moiety, the four atoms C13—C14—C13A—C14A are coplanar, and N3 atom or N3A atom lies above or below the mean plan by 0.6510 or -0.6510 Å. Furthermore, the plan makes dihedral angles of 129 ° with ring C13—N3—C14A or ring C13A—N3A—C14, indicating that the two rings are parallel and that the piperazine ring has a chair conformation just like other Schiff bases containing piperazine ring (Paital *et al.*, 2009; Thirumurugan *et al.*, 1998).

Experimental

A solution of N,N-bis(N-aminopropyl)-piperazine (1.5 mmol in 10 ml anhydrous methanol) was added dropwise with constant stirring to the solution of paradimethylaminobenzaldehyde (3 mmol in 15 ml anhydrous methanol) at 327 K for 3 h. The resulting mixture was filtrated. After cooling, the filtrate was evaporated at ambient environment. Several days later, the yellow crystals suitable for X-ray analysis were collected and washed with small amount of methanol and dried at room temperature (yield 77%).

Refinement

H atoms were placed in calculated positions with C—H = 0.93–0.97 Å, and refined in riding mode with $U_{iso}(H)$ = 1.5 $U_{eq}(C)$ for methyl H atoms and $U_{iso}(H)$ = 1.2 $U_{eq}(C)$ for the others.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

1,4-Bis{3-[4-(dimethylamino)benzylideneamino]propyl}piperazine

Crystal data

$C_{28}H_{42}N_6$	$F_{000} = 504$
$M_r = 462.68$	$D_{\rm x} = 1.118 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 683 reflections
a = 17.599 (2) Å	$\theta = 2.4 - 49.5^{\circ}$
b = 6.4146 (12) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 12.6643 (18) Å	T = 298 K
$\beta = 105.921 \ (3)^{\circ}$	Platelet, yellow
$V = 1374.8 (4) \text{ Å}^3$	$0.15\times0.09\times0.07~mm$
Z = 2	

Data collection

Bruker SMART CCD area-detector diffractometer	961 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.088$
Monochromator: graphite	$\theta_{\text{max}} = 25.0^{\circ}$
T = 298 K	$\theta_{\min} = 2.4^{\circ}$
φ and ω scans	$h = -20 \rightarrow 20$
Absorption correction: none	$k = -7 \rightarrow 5$
6788 measured reflections	$l = -15 \rightarrow 14$
2416 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.095$	$w = 1/[\sigma^2(F_0^2) + (0.0892P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.298$	$(\Delta/\sigma)_{\text{max}} = 0.004$
<i>S</i> = 1.34	$\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$
2416 reflections	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
155 parameters	Extinction correction: SHELXTL (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.015 (5)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y N1 0.9158 (3) 0.0687 (16) -0.7316(8)1.1684 (4) N2 0.7447 (3) 0.0908 (8) 0.9057 (5) 0.0667 (15) N3 0.5991 (4) 0.0590 (14) 0.5629(3) 0.4652(7) C1 0.7396(3)-0.0090(10)0.9908 (6) 0.0625(17)H10.075* 0.7045 0.0408 1.0280 C2 0.7852(3)-0.1960(9)1.0339 (5) 0.0541 (16) C3 0.8387 (3) -0.2867(10)0.9837 (5) 0.0598 (17) H3 0.8455 -0.22950.9194 0.072* C4 0.8822(3)-0.4629(9)1.0298 (5) 0.0563 (16) H4 0.9183 -0.51940.9961 0.068* C5 0.8728 (3) -0.5567(9)1.1258 (5) 0.0539 (16) C6 0.8190 (3) 1.1741 (5) -0.4665(9)0.0580 (16) H6 0.8113 -0.52551.2375 0.070* C7 -0.2905(10)1.1299 (5) 0.7766 (3) 0.0672 (18) H7 1.1649 0.081* 0.7414 -0.2333C8 0.9031 (4) -0.8320(10)1.2662 (5) 0.083 (2) H8A 0.9375 0.124* -0.95051.2856 H8B 0.8492 1.2510 -0.87670.124* H8C 0.9145 -0.73461.3260 0.124* C9 0.9638 (4) -0.8399 (10) 1.1115 (6) 0.083 (2) H9A 0.9889 -0.95631.1548 0.125* H9B 1.0033 -0.74711.0993 0.125* H9C 0.9312 -0.88901.0422 0.125* 0.2755 (10) C10 0.6968 (4) 0.0704(19)0.8724 (5) H10A 0.7309 0.3962 0.8784 0.084* H10B 0.6636 0.2962 0.9214 0.084* C11 0.6451 (4) 0.2571 (9) 0.7554 (5) 0.0665 (18) H11A 0.6095 0.1398 0.7500 0.080* H11B 0.6781 0.2311 0.7067 0.080* C12 0.5971 (3) 0.4555 (9) 0.7193 (5) 0.0637 (18) H12A 0.5548 0.4618 0.7547 0.076* H12B 0.7431 0.076* 0.6309 0.5758 C13 0.5345 (4) 0.6762 (9) 0.5644(5)0.0710(19)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H13A	0.5778	0.7745	0.58	373	0.085*	
H13B	0.4940	0.7152	0.59	995	0.085*	
C14	0.5005 (4)	0.6860 (10	0) 0.43	399 (5)	0.0678 (18)	
H14A	0.4803	0.8251	0.41	89	0.081*	
H14B	0.5422	0.6586	0.40)51	0.081*	
Atomic disp	placement parameters	$s(A^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.081 (4)	0.071 (4)	0.055 (4)	0.017 (3)	0.020 (3)	0.013 (3)
N2	0.061 (3)	0.074 (4)	0.063 (4)	0.015 (3)	0.013 (3)	0.011 (3)
N3	0.054 (3)	0.060 (3)	0.063 (4)	0.007 (3)	0.015 (3)	0.012 (3)
C1	0.057 (4)	0.069 (4)	0.067 (5)	0.005 (3)	0.026 (3)	-0.007 (4)
C2	0.052 (3)	0.062 (4)	0.049 (4)	0.004 (3)	0.015 (3)	0.004 (3)
C3	0.062 (4)	0.067 (4)	0.052 (4)	-0.007 (3)	0.017 (3)	0.003 (3)
C4	0.057 (4)	0.062 (4)	0.052 (4)	0.003 (3)	0.019 (3)	0.001 (3)
C5	0.059 (4)	0.057 (4)	0.043 (4)	-0.007 (3)	0.009 (3)	0.003 (3)
C6	0.070 (4)	0.065 (4)	0.043 (4)	-0.005 (3)	0.023 (3)	0.000 (3)
C7	0.065 (4)	0.073 (5)	0.072 (5)	-0.002 (4)	0.033 (4)	0.003 (4)
C8	0.098 (5)	0.079 (5)	0.067 (5)	0.003 (4)	0.014 (4)	0.017 (4)
C9	0.097 (5)	0.069 (5)	0.086 (6)	0.013 (4)	0.027 (4)	0.004 (4)
C10	0.061 (4)	0.070 (5)	0.075 (5)	0.006 (3)	0.012 (4)	0.010 (4)
C11	0.069 (4)	0.067 (4)	0.068 (5)	0.012 (3)	0.026 (4)	0.015 (4)
C12	0.062 (4)	0.068 (4)	0.063 (5)	0.006 (3)	0.020 (3)	0.008 (3)
C13	0.075 (4)	0.063 (4)	0.072 (5)	0.013 (4)	0.017 (4)	0.013 (3)
C14	0.068 (4)	0.063 (4)	0.073 (5)	0.003 (4)	0.021 (4)	0.021 (4)

Geometric parameters (Å, °)

N1—C5	1.378 (7)	C8—H8A	0.9600
N1—C9	1.432 (7)	С8—Н8В	0.9600
N1—C8	1.466 (7)	C8—H8C	0.9600
N2—C1	1.278 (7)	С9—Н9А	0.9600
N2—C10	1.448 (7)	С9—Н9В	0.9600
N3—C13	1.468 (7)	С9—Н9С	0.9600
N3—C14 ⁱ	1.459 (7)	C10—C11	1.516 (8)
N3—C12	1.477 (7)	C10—H10A	0.9700
C1—C2	1.462 (8)	C10—H10B	0.9700
C1—H1	0.9300	C11—C12	1.527 (8)
C2—C7	1.404 (7)	C11—H11A	0.9700
C2—C3	1.400 (7)	C11—H11B	0.9700
C3—C4	1.399 (8)	C12—H12A	0.9700
С3—Н3	0.9300	C12—H12B	0.9700
C4—C5	1.407 (7)	C13—C14	1.527 (8)
C4—H4	0.9300	С13—Н13А	0.9700
C5—C6	1.387 (8)	С13—Н13В	0.9700
C6—C7	1.384 (8)	C14—N3 ⁱ	1.459 (7)
С6—Н6	0.9300	C14—H14A	0.9700

С7—Н7	0.9300	C14—H14B	0.9700
C5—N1—C9	122.3 (5)	N1—C9—H9B	109.5
C5—N1—C8	119.7 (5)	Н9А—С9—Н9В	109.5
C9—N1—C8	117.3 (5)	N1—C9—H9C	109.5
C1—N2—C10	119.0 (5)	Н9А—С9—Н9С	109.5
C13—N3—C14 ⁱ	110.2 (5)	Н9В—С9—Н9С	109.5
C13—N3—C12	110.9 (5)	N2-C10-C11	111.5 (5)
C14 ⁱ —N3—C12	112.2 (5)	N2—C10—H10A	109.3
N2—C1—C2	124.6 (6)	C11—C10—H10A	109.3
N2—C1—H1	117.7	N2-C10-H10B	109.3
С2—С1—Н1	117.7	C11—C10—H10B	109.3
C7—C2—C3	117.4 (6)	H10A—C10—H10B	108.0
C7—C2—C1	120.0 (6)	C10-C11-C12	111.2 (5)
C3—C2—C1	122.7 (6)	C10-C11-H11A	109.4
C4—C3—C2	120.4 (6)	C12-C11-H11A	109.4
С4—С3—Н3	119.8	C10-C11-H11B	109.4
С2—С3—Н3	119.8	C12-C11-H11B	109.4
C3—C4—C5	121.7 (6)	H11A—C11—H11B	108.0
С3—С4—Н4	119.2	N3—C12—C11	112.3 (5)
С5—С4—Н4	119.2	N3—C12—H12A	109.1
N1—C5—C6	122.3 (6)	C11—C12—H12A	109.1
N1—C5—C4	120.3 (6)	N3—C12—H12B	109.1
C6—C5—C4	117.4 (6)	C11—C12—H12B	109.1
C7—C6—C5	121.3 (6)	H12A—C12—H12B	107.9
С7—С6—Н6	119.3	N3—C13—C14	110.6 (5)
С5—С6—Н6	119.3	N3—C13—H13A	109.5
C6—C7—C2	121.9 (6)	C14—C13—H13A	109.5
С6—С7—Н7	119.1	N3—C13—H13B	109.5
С2—С7—Н7	119.1	C14—C13—H13B	109.5
N1—C8—H8A	109.5	H13A—C13—H13B	108.1
N1—C8—H8B	109.5	N3 ⁱ —C14—C13	111.6 (5)
H8A—C8—H8B	109.5	N3 ⁱ —C14—H14A	109.3
N1—C8—H8C	109.5	C13—C14—H14A	109.3
H8A—C8—H8C	109.5	N3 ⁱ —C14—H14B	109.3
H8B—C8—H8C	109.5	C13—C14—H14B	109.3
N1—C9—H9A	109.5	H14A—C14—H14B	108.0

Symmetry codes: (i) -x+1, -y+1, -z+1.

